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3.4 From Fourier-frequency to Carrier-frequency Domain

Often, when dealing with laser or microwave frequency standards, one is interested in the
power spectrum of the oscillator in the carrier frequency domain. An ideal oscillator operat-
ing at the frequency 1, would consist of a delta function at v in the carrier frequency domain.
For a real oscillator perturbed by noise processes the power is spread over a frequency range
around the centre frequency 1. The power spectrum can be measured by different methods.
As a first method consider a bandpass filter whose centre frequency is tuned over a frequency
range in the vicinity of the centre frequency of the oscillator. The power spectrum of the os-
cillator is directly related to the power transmitted through the filter measured as a function of
the frequency setting of the filter. In the optical domain, a tuneable Fabry—Pérot interferometer
(Section 4.3.1) is often chosen as a filter to sweep across laser lines. Another possibility of
measuring the power spectrum in the carrier frequency domain is to feed the signal from the
oscillator simultaneously to a parallel filter bank. The parallel filter bank can also be simulated
by a fast Fourier transform of a digitised and numerically filtered signal. It has to be pointed
out, however, that the concept of a power spectrum with a well defined form and linewidth
is in general not applicable to all noise processes. As an example, consider a power spectral
density with large 1/ f contribution. For long observation times corresponding to low Fourier
frequencies the central frequency may drift away and, hence, there is no unique “linewidth”
as the measured width of the power spectrum will depend on the observation time.

With this note of caution in mind, we show in this section how the shape of the emission
line in the carrier frequency domain can be determined from a particular noise spectral density,
e.g., S, (v) determined in the Fourier domain. The power spectrum of the electric field Sg(v)
can be evaluated by following [35-37]. In analogy to (3.27) and (3.28) one defines the two-
sided power spectral density as the Fourier transform

Sp(v) = / exp (—i2nvt) Rp(T)dr (3.53)
of the autocorrelation function
Re(1) = (E(t+7)E*(t)) (3.54)

of the electric field E(t). For a complex representation of the electric field of the electromag-
netic wave with negligible amplitude fluctuations and real amplitude

E(t) = Egexpi[2nvot + ¢(t)] (3.55)
the autocorrelation function becomes
Re(r) = Eg exp[i27w07']< expilp(t +7) — ¢(T)]> (3.56)

Now, (expi[p(t + 7) — ¢(7)]) has to be expressed in terms of the spectral density of phase
fluctuations Sy ( f). To begin with, one assumes that the noise process is ergodic, i.e., that the
temporal average is identical to the corresponding ensemble average

o0

exp[i®(t,7)] = (exp[i®(t, 7)]) = / p(®) exp(i®)dd (3.57)

— o0
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where

O(t, )=t + 1) — o(7) (3.58)
is the phase accumulated during the interval 7. The right-hand side of (3.57) uses the usual
definition of the expectation value of the quantity exp[i® (¢, 7)] if the probability density p(P)

is known. For a large number of uncorrelated phase-shifting events the central limit theorem
allows one to use the Gaussian probability density

2
p(®) = S exp ( kd ) (3.59)

oV2r 202

with the classical variance o?. As p(®) is an even function, only the real (cosine) part
of the complex exponential of (3.57) survives. (3.57) is evaluated by using (3.59) and
[, exp(—a®a?) coswdr = /T /aexp(1/4a?) leading to

a

2
(exp[i®(t,7)]) = exp <—?> . (3.60)
According to (3.11) with vanishing mean value (®) = 0 and (3.58)

o*(®) = (2°) = ([p(t+7)—$(r)]*)

= ([t +)) = 2([ot +7)(7)]) + ( [$(7)]*). (3.61)
Using (3.54) and (3.32) one finds

oo

(ot +10(r)]) = [ Suls) costemfridf = Ro(r) (3.62)
0
(ott+0%) = (6) = [ Sulh)af = Ri0), (3.63)

Insertion of (3.62) and (3.63) into (3.61) leads (t)o

0? =2 75¢(f) [1— cos2r fr)]df (3.64)
which can be u;)ed to derive the autocorrelation function from (3.56)

Rp(r) = E3 exp(i2m7) exp | — 75¢( [ —cos2rfr)|df | . (3.65)
From (3.53) and (3.65) the power spectral dznsity in the carrier frequency domain

Sp(v—w) =E2 7 exp —[i2m(v — vo)T] exp | — 7S¢(f) [1 —cos2mfr)]df | dr
“0 0

(3.66)

can be derived for a given phase noise spectral density S, (f) (see (3.37)) provided that the
integral in brackets in (3.66) converges.



66 3 Characterisation of Amplitude and Frequency Noise

3.4.1 Power Spectrum of a Source with White Frequency Noise

We now consider a source whose power spectral density in the Fourier-frequency domain can
be represented as white (frequency independent) frequency noise SO (see Table 3.1). Conse-
quently,

SB I/gho

holds and the integral in the exponential of (3.66) can be solved analytically using jboo[l —
cos(bx)]/z2dx = 7|b|/2 leading to

Ss(f) (3.67)

o

Sp(v—1v) = E2 / exp —[i2m(v — vo) 7] exp (—w2ho1g|7|) dr
= 2E§/ exp —T [z’2ﬂ'(1/ — )+ wzhoyg] dr. (3.68)

0
Solving the integral (3.68) and keeping the real part leads to the power spectral density of
hom?vd 5 v/2

Se(v—1) = 2E2 =2F, 3.69
E( 0) 0 h87T4Vg + 471'2(1/ _ VO)Q 0 (7/2)2 + 471_2(]/ . 1/0)2 ( )

with v = 2hon?1¢ = 2m(mhord) = 2m(7SY). Hence, the power spectral density of frequency
fluctuations in the carrier-frequency domain of an oscillator with white frequency noise S in
the Fourier-frequency domain, is a Lorentzian whose full width at half maximum is given by

AVFWHM = 7TS2 (370)

Similarly, other types of phase noise spectral densities can be calculated accordingly. Godone
and Levi have furthermore treated the case of white phase noise and flicker phase noise [38].

3.4.2 Spectrum of a Diode Laser

As an example of white frequency noise, consider the frequency fluctuations in a laser result-
ing from the spontaneous emission of photons [39]. They lead to the so-called Schawlow—
Townes linewidth

27rh1/0(Au1/2)2,u

iz (3.71)

AvgnL =
where hvyg is the photon energy, Avy/; is the full width at half maximum of the passive
laser resonator, = Na/(No — N7) is a parameter describing the population inversion in
the laser medium, and P is the output power of the laser. This quantum-noise limited power
spectral density (which is enhanced for laser diodes by Henry’s linewidth enhancement factor;
see (9.37)) can be found in the measured spectral noise of a solitary diode laser (Fig. 3.10)
at Fourier frequencies above a corner frequency of about 80 kHz. At frequencies below the
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Figure 3.10: Measured power spectral densities of frequency fluctuations versus Fourier fre-
quency f of a diode laser without optical feedback (triangles) and with optical feedback from a
grating (squares) after [40] with permission.

corner frequency the power spectral density increases with a power law of roughly 1/f. The
white frequency noise regime is also visible above the corner frequency f. of about 200 kHz if
the cavity of the diode laser is extended (Section 9.3.2.5) but S,,( f) is reduced by about 33 dB
according to the reduced linewidth Avy /5 (see (3.71)).

As the 1/ f-like behaviour often results from technical noise which is present in any os-
cillator to some degree it is interesting to investigate the validity of (3.69). O’Mahony and
Henning [41] have investigated the effect of low frequency (1/f) carrier noise on the linewidth
of a semiconductor laser. From their findings Koch [40] gives a criterion that allows one
to obtain information about the lineshape from the positions of the corner frequencies f,. as
follows

Su(f))fe > 1:= Lorentzian lineshape (3.72)
Su(fe)/fe < 1:= Gaussian lineshape. (3.73)

We apply these criteria to the power spectral density of frequency noise displayed in Fig. 3.10
where one finds, for the solitary laser diode (triangles), S, (f.)/f. > 100 and, hence, crite-
rion (3.72) applies. With (3.70) one expects a Lorentzian profile of about 5 MHz linewidth.
From the power spectral density of frequency fluctuations (squares in Fig. 3.10) of another
diode laser with extended cavity (Section 9.3.2.5) one finds S, (f.)/f. ~ 102 and hence ex-
pects a Gaussian lineshape according to criterion (3.73). The origin of the Gaussian lineshape
can be thought of as resulting from a small Lorentzian line whose width is given by (3.70)
which statistically wanders around a central frequency. The width of the Gaussian depends
on the time 7' of averaging, as the measurement time 7" also defines the lowest measurable
Fourier frequency 1/T. For a true 1/f behaviour of S, the linewidth would be infinite as
flofT S, (f)df = oo holds (see (3.66)). Experimentally, however, one always finds a finite

linewidth resulting from the finite measurement time 7" with the low-frequency cut off 1/7.
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The mean frequency excursion Avy,s (linewidth) can be computed as

(3.74)

from (3.39). In the case of the laser with optical feedback in an extended cavity arrangement
(squares in Fig. 3.10) one derives a FWHM of the Gaussian of about 120 kHz for a measure-
ment time of 10 ms.

3.4.3 Low-noise Spectrum of a Source with White Phase Noise

With the help of (3.62) and (3.63) we can write (3.66) as

o

Sp(v—1) = E2 / exp [—Ry4(0)] exp [Ry(7)] exp[—i27 (v — vo)T]dT. (3.75)

—00

For very low phase fluctuations, i.e., for fooo Se(f)df < 1itis justified to expand the first
two exponential functions in (3.75) and to keep only the first terms as

Sy — vo) ~ B2 / [1 = Ry(0) + Ry (7)) expl—i2r(v — vo)r]dr. (3.76)

—00

Using the definition of Dirac’s delta function § (v —vy) (see (2.23)) and the Wiener—Khintchine
relation (3.28) one finds

Se(v— 1) ~ Ef [1 = Ry(0)] 6(v — ) + BG S5 (v — 1p). (3.77)

Hence, the spectrum in the carrier frequency domain comprises a carrier (delta function) at
v = vy and two symmetric sidebands with the level of the phase noise spectral density S at
f=1v—wl

Often commercial oscillators are specified by the measure of the so-called spectral purity
L(f), i.e., the noise found on each side of the carrier when the signal of an oscillator is
measured directly with a spectrum analyser [1]

SQ—sided(’/ _ VO)
Lifl==2—— 3.78
() T35 (379)
Here it is assumed that the amplitude noise is negligible as compared to the phase noise. Then
the spectral purity represents all phase noise for all Fourier frequencies except for the origin,
i.e., the delta function of (3.77).



